
PHYSICAL REVIEW E, VOLUME 65, 026121
Multicomponent binary spreading process
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~Received 1 October 2001; published 18 January 2002!

I investigate numerically the phase transitions of two-component generalizations of binary spreading pro-
cesses in one dimension. In these models pair annihilationAA→B, BB→B, explicit particle diffusion, and
binary pair production processes compete with each other. Several versions with spatially different production
are explored, and it is shown that for the cases 2A→3A, 2B→3B and 2A→2AB, 2B→2BA a phase
transition occurs at zero production rate (s50), which belongs to the class ofN-component, asymmetric
branching and annihilating random walks, characterized by the order parameter exponentb52. In the model
with particle productionAB→ABA, BA→BAB a phase transition point can be located atsc50.3253 which
belongs to the class of one-component binary spreading processes.
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One-dimensional, nonequilibrium phase transitions h
been found to belong to a few universality classes, the m
robust of them being the directed percolation~DP! class
@1,2#. According to the hypothesis of@3,4# all continuous
phase transitions to single absorbing states in homogene
single component systems with short ranged interactions
long to this class, provided there is no additional symme
or quenched randomness present. The best known exce
to the robust DP class is the parity conserving~PC! class@5#,
where a mod 2 conservation of particles happens@for ex-
ample, in even offspring branching and annihilating rand
walks ~BARWE!# and in multiabsorbing state systems whe
an exactZ2 symmetry is also satisfied@6#. There are other
classes being explored recently where the total numbe
particles is conserved@7–13#.

In multicomponent systems bosonic field theory@14#,
simulations@15#, and density matrix renormalization grou
analysis@16# have revealed the universality class of the ge
eralization of the BARWE class. Hard-core particle exc
sion effects can change both the dynamic@17,18# and static
@15,19–22# behavior of one-dimensional systems by intr
ducing blockades into the particle dynamics. Earlier it w
shown that an infinite number of conservation laws eme
in stochastic deposition-evaporation models ofQ-mers in
one dimension@23,24# that split up the phase space into k
netically disconnected sectors. That results in initi
condition-dependent autocorrelation functions.

In @18# a two-component generalization of the annihila
ing random walk~2-ARW! model was introduced taking int
account hard-core repulsion of particles:

AA→
l

B, BB→
l

B, AB↔
d

BA, BB↔
d

BB, AB↔” BA ~1!

~wherel and d denote the annihilation and diffusion rate!
and it was shown that the initial conditions influen
the particle density~order parameter! decay and the dynami
cal exponents. On adding pair creation proces

(A→
s

2BA,B→
s

2AB) to this model, a continuous phase tra
sition occurs at creation rates50 and two universality
classes appear depending on the arrangement of the offs
relative to the parent@15#; namely, if the parent separates th
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two offspring A→
s

BAB ~2-BARW2S! ~symmetric! the
steady state density will be higher than in the case when t

are created on the same site,A→
s

ABB ~2-BRAW 2A! ~anti-
symmetric! for a given branching rates because in the
former case they are unable to annihilate each other. T
results in different off-critical order parameter exponents
the symmetric and asymmetric cases~bs51/2 andba52!.
This is in contrast to the widespread belief that bosonic fi
theory can well describe reaction-diffusion systems in g
eral. In the field theoretical version@14#, where theAB↔BA
exchange is allowed, the critical behavior is different. Mea
field-like and simulation results led Kwonet al. @19# to the
assumption that in one-dimensional reaction-diffusion s
tems a series of new universality classes should appe
particle exclusion is present.

In a recent paper@21# I showed that if one adds singl
particle creation to the 2-ARW model,

A→
s

AB, B→
s

BA, ~2!

a continuous phase transition occurs again ats50 and the
critical exponents coincide with that of the 2-BARW2
model, although the parity of the particle number is not co
served. Therefore, this conservation law, which was relev
in the case of one-component systems~PC versus DP class!,
is irrelevant here. In@21# I made the hypothesis that i
coupled branching and annihilating random walk systems
N types of excluding particles with continuous transitions
s50, two universality classes exist, those of the 2-BARW
and 2-BARW2A models, depending on whether the reacta
can immediately annihilate@i.e., when similar particles are
not separated by other type~s! of particle~s!# or not. These
classes differ only in the off-critical exponents, while th
on-critical ones are the same. This is due to the fact that
critical point is at zero branching rate (s50) and therefore
the critical exponents are the ones determined for the 2-A
model @18,15#.

In this paper I extend the investigation to coupled bina
production spreading processes, where new universal be
ior has recently been reported. Studies on the annihila
fission process 2A→B, 2A→3A, AB↔BA @25–29# found
©2002 The American Physical Society21-1
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evidence that there is a phase transition in this model
does not belong to any previously known universality cla
This model without the single particle diffusion term—the
called pair contact process~PCP!, where pairs of particles
can annihilate or create new pairs—was introduced or
nally by Jensen@32#, and while the static exponents we
found to belong to the DP class the spreading ones s
nonuniversal behavior. By adding explicit single particle d
fusion @26# Carlonet al. introduced the so called PCPD pa
ticle model. The renormalization group analysis of the c
responding bosonic field theory was given by Howard a
Täuber @25#. This study predicted a non-DP class transitio
but it could not tell to which universality class this transitio
really belongs. An explanation based on symmetry ar
ments is still missing but numerical simulations sugg
@28,33# that the behavior of this system can be well describ
~at least for strong diffusion! by coupled subsystems: sing
particles performing annihilating random walks coupled
pairs ~B! following a DP process: B→2B, B→B. The
model has two nonsymmetric absorbing states: one is c
pletely empty and in the other a single particle walks ra
domly. Owing to this fluctuating absorbing state this mod
does not oppose the conditions of the DP hypothesis.

In the low diffusion region (d,;0.4) some exponents o
the PCPD model are close to those of the PC class but
order parameter exponent~b! has been found to be very fa
away from the values of both the DP and the PC class@28#.
In fact, this system does not exhibit either theZ2 symmetry
or the parity conservation which appear in models with a
class transition. In the high diffusion region the critical e
ponents seem to be different@26,28,30#, suggesting anothe
universality class there@28#. This is also supported by th
pair mean-field results@26#. A recent universal finite size
scaling amplitude study@31# suggests, however, that a sing
universality class with strong corrections to scaling may a
be possible.

It is conjectured by Henkel and Hinrichsen@34# that this
kind of phase transition appears in models where~i! solitary
particles diffuse,~ii ! particle creation requires two particle
and ~iii ! particle removal requires at least two particles
meet. Very recently, Parket al. @35# have investigated the
parity conserving version of the PCPD model (2A→4A,2A
→B,AB↔BA) and, contrary to the apparent conservati
law, they found similar scaling behavior, which led them
the assumption that the binary nature of the offspring p
duction is a necessary condition for this class. Other con
tions that would influence the occurrence of this class sho
be clarified too. In this paper I address the question
whether the particle exclusion effects are relevant, as in
case of BARW processes, and whether the hypothesis se
for N-BARW systems@21# could be extended.

One site update step of the applied algorithms consist
the following processes. A particle is selected randomly
left or right nearest neighbor is chosen with probability 0
With probabilitys pair production is attempted in the case
an appropriate neighbor. Otherwise~with probability d5l
512s! hopping is attempted if the neighboring site
empty, or if it is filled with a particle of the same type the
are annihilated. The following models with the same diff
02612
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sion and annihilation terms as Eq.~1! and different produc-
tion processes will be investigated here.

~a! The production and annihilation random walk mod
~2-PARW!:

AA ——→
s/2

AAB, AA ——→
s/2

BAA, ~3!

BB ——→
s/2

BBA, BB ——→
s/2

ABB ~4!

~b! The symmetric production and annihilation rando
walk model~2-PARWS!:

AA→
s

AAA, ~5!

BB→
s

BBB. ~6!

~c! The asymmetric production and annihilation rando
walk model~2-PARWA!:

AB ——→
s/2

ABB, AB ——→
s/2

AAB, ~7!

BA ——→
s/2

BAA, BA ——→
s/2

BBA. ~8!

~d! The asymmetric production and annihilation rando
walk model with spatially symmetric creation~2-PARWAS!:

AB ——→
s/2

ABA, AB ——→
s/2

BAB, ~9!

BA ——→
s/2

BAB, BA ——→
s/2

ABA. ~10!

The evolution of particle densities was followed by Mon
Carlo simulations started from randomly distributedA,B, B
sites in systems of sizesL5105 and with periodic boundary
conditions.

The 2-PARWA model~c! does not have an active stead
state. TheAA andBB pairs annihilate themselves on conta
while if an A andB particle meet anAB→ABB→A process
reduces blockades, so the densities decay with ar}t21/2 law
for s.0. This was confirmed by my simulations. Note th
for s50 the blockades persist and in the case of a rand
initial state ar}t21/4 decay can be observed@15#.

The 2-PARW~a! and 2-PARWS~b! models exhibit active
steady states fors.0 with a continuous phase transition
s50. Therefore the exponents at the critical point will b
those of the ARW-2 model. The convergence to the ste
state is very slow. Fors50.1 it was longer than 109 Monte
Carlo steps~MCS!. This limits the simulations in approach
ing the critical point ats50. However, as Fig. 1 shows,
rather good scaling behavior of the density versuss can be
observed.

The local slope analysis shows that the scaling beha
extrapolates tob52.1(2) in the 2-PARWS model and tob
51.9(2) in the 2-PARW model. These values are in agr
ment with those of the 2-BARW2A class (b52), where
production is such that pair annihilation is enhanced.

In the case of the 2-PARWAS model~d! theAB blockades
proliferate by production events. As a consequence of this
1-2
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active steady state appears fors.0.3253(1) with a continu-
ous phase transition. The space-time evolution from a r
dom initial state shows~Fig. 2! that compact domains o
alternating ...ABAB... sequences separated by lonely wand
ing particles are formed. This is very similar to what w
seen in the case of one-component binary spreading
cesses@33#: compact domains within a cloud of lonely ran
dom walkers, except that now domains are built up fro
alternating sequences only. This means that ...AAAA... and
...BBBB... domains decay at this annihilation rate and parti
blocking is responsible for the compact clusters. In the l
guage of the coupled DP1ARW model @33#, the pairs fol-
lowing the DP process are now theAB pairs, which cannot
decay spontaneously but through an annihilation proces
AB1BA→B. They interact with two types of particle ex
ecuting annihilating random walks with exclusion.

Simulations from random initial states were run for up

FIG. 1. Steady state densities as a function ofs in the 2-PARW
~squares! and 2-PARWS~circles! models.

FIG. 2. Space-time evolution from random initial state of t
2-PARWAS model at the critical point. Black dots correspond toA
particles, gray dots toB’s.
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106 MCS. The local slopes of the particle density decay

aeff~ t !5
2 ln@r~ t !/r~ t/m!#

ln~m!
~11!

~wherem58 is used! at the critical point approach the ex
ponent a asymptotically as a straight line, while in sub
~super!critical cases they veer down~up! ~see Fig. 3!. At the
critical point @sc50.3253(1)# one can estimate that the e
fective exponent tends toa50.19(1), which is higher than
the exponent of (111)-dimensional directed percolatio
@0.1595~1!# @36# and in fairly good agreement with that o
the PCPD model in the high diffusion rate region@0.20~1!#
@28#.

In the supercritical region the steady states were de
mined for differente5s2sc values. Following level-off the
densities were averaged over 104 MCS and 1000 samples
By looking at the effective exponent defined as

beff~e i !5
ln r~e i !2 ln r~e i 21!

ln e i2 ln e i 21
~12!

~Fig. 4! one can read offbeff→b.0.37(2), which is again
higher than the (111)-dimensional DP value 0.27649~4!
@37#, and agrees with that of the PCPD model in the hi
diffusion rate region@0.39~2!# @28#.

Finally, the survival probability@P(t)# of systems started
from random initial condition was measured for sizesL
550,100,200,400,800,1600. The characteristic timet(L) to
decay toP(t)50.9 was determined and is shown on Fig.
At criticality one expects the finite size scaling

t~L !}LZ, ~13!

where Z is the dynamical exponent. Power-law fitting r
sulted inZ51.81(2), which is far away from the DP value
Z51.580 740 (34)@36# but close to various estimates for th
PCPD valueZ51.75(10) @26,27#.

FIG. 3. Local slopes of the density decay in the PARWA
model. Different curves correspond tos50.325, 0.3252, 0.3253
0.3254, 0.3255, and 0.326~from bottom to top!.
1-3
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In conclusion, I have shown in this work that the hypot
esis that I made forN-BARW models with exclusion@21#
may be extended to coupled binary production annihilat
models. The critical point in the 2-PARW and 2-PARW
models occurs ats50 production rate and therefore the o
critical exponents coincide with those of the 2-ARW mod
The simulations for the off-critical behavior of the order p
rameter showed that the transition belongs to
2-BARW2A class. The robustness of this class is striki
especially in the case of the 2-PARWS model where in p
ciple two copies of PCPD models are superimposed
coupled by the exclusion interaction only.

If the production is generated by different types of p
ticles ~AB! such that alternating sequences are generated~2-
PARWAS model!, the space-time evolution will resemb
that of the PCPD model with alternating frozen sequen

FIG. 4. Effective order parameter exponent results. Linear
trapolation results inb50.37(2).
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inside the compact domains. This system exhibits a cont
ous phase transition ats50.3253(1) with exponents in
fairly good agreement with those of the PCPD model in
high diffusion region. Therefore, the conjecture of@34# may
be extended for multicomponent systems if the transit
happens at nonzero production rate. In the model whereAB
pairs create offspring in such a way that prompt annihilat
is possible, active steady states are not formed for anys and
the density decays without blockades fors.0 asr}t20.5,
but a crossover to the 2-ARW model scalingr}t20.25 occurs
at s50.

The authors thanks H. Chate´ and P. Grassberger for the
comments. Support from Hungarian research funds OT
~Grant No. T-25286! and Bolyai~Grant No. BO/00142/99! is
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allel cluster of SZTAKI and on the supercomputer of NII
Hungary.

- FIG. 5. Lifetime versus system size at the critical point.
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30, 113 ~2000!, and references therein.
@7# M. Rossi, R. Pastor-Satorras, and A. Vespignani, Phys. R

Lett. 85, 1803~2000!.
@8# M. A. Munoz, R. Dickman, A. Vespignani, and S. Zappe

Phys. Rev. E59, 6175~1999!.
@9# R. Pastor-Satorras and A. Vespignani, Phys. Rev. E62, 5875

~2000!.
@10# R. Kree, B. Schaub, and B. Schmittmann, Phys. Rev. A39,

2214 ~1989!.
v.

@11# F. van Wijland, K. Oerding, and H. J. Hilhorst, Physica A251,
179 ~1998!.

@12# J. E. de Freitas, L. S. Lucena, L. R. da Silva, and H. J. H
horst, Phys. Rev. E61, 6330~2000!.

@13# M. C. Marques, Phys. Rev. E64, 016104-1~2001!.
@14# J. L. Cardy and U. C. Ta¨uber, J. Stat. Phys.90, 1 ~1998!.
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