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Multicomponent binary spreading process
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| investigate numerically the phase transitions of two-component generalizations of binary spreading pro-
cesses in one dimension. In these models pair annihil&idr ), BB— J, explicit particle diffusion, and
binary pair production processes compete with each other. Several versions with spatially different production
are explored, and it is shown that for the casds—23A, 2B—3B and 2A—2AB, 2B—2BA a phase
transition occurs at zero production rate=f0), which belongs to the class &f-component, asymmetric
branching and annihilating random walks, characterized by the order parameter experznin the model
with particle productiorAB—ABA, BA—BAB a phase transition point can be locatedrgt 0.3253 which
belongs to the class of one-component binary spreading processes.
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One-dimensional, nonequilibrium phase transitions hav%
been found to belong to a few universality classes, the mo
robust of them being the directed percolatiP) class pe
[1,2]. According to the hypothesis dB,4] all continuous are created on the same sife>ABB (2-BRAW 2A) (anti-
phase transitions to single absorbing states in homogeneowsymmetrig for a given branching rater because in the
single component systems with short ranged interactions bdermer case they are unable to annihilate each other. This
long to this class, provided there is no additional symmetryresults in different off-critical order parameter exponents for
or guenched randomness present. The best known exceptitie symmetric and asymmetric casgh=1/2 and3,=2).
to the robust DP class is the parity conserviRg) class[5],  This is in contrast to the widespread belief that bosonic field
where a mod 2 conservation of particles happgos ex-  theory can well describe reaction-diffusion systems in gen-
ample, in even offspring branching and annihilating randoneral. In the field theoretical versidi4], where theAB—BA
walks (BARWE)] and in multiabsorbing state systems whereexchange is allowed, the critical behavior is different. Mean-
an exactZ, symmetry is also satisfies]. There are other field-like and simulation results led Kwoet al. [19] to the
classes being explored recently where the total number agissumption that in one-dimensional reaction-diffusion sys-
particles is conservel—13. tems a series of new universality classes should appear if

In multicomponent systems bosonic field thedi4],  particle exclusion is present.
simulations[15], and density matrix renormalization group  In a recent papef21] | showed that if one adds single
analysig[16] have revealed the universality class of the gen-particle creation to the 2-ARW model,
eralization of the BARWE class. Hard-core particle exclu-
sion effects can change both the dynaiii¢,18 and static AiAB, B BA, )
[15,19-22 behavior of one-dimensional systems by intro-
ducing blockades into the particle dynamics. Earlier it wasg continuous phase transition occurs agaimat0 and the
shown that an infinite number of conservation laws emergeritical exponents coincide with that of the 2-BARW2S
in stochastic deposition-evaporation models @imers in  model, although the parity of the particle number is not con-
one dimension23,24 that split up the phase space into ki- served. Therefore, this conservation law, which was relevant
netically disconnected sectors. That results in initial-in the case of one-component systefR€ versus DP clags
condition-dependent autocorrelation functions. is irrelevant here. In21] | made the hypothesis that in

In [18] a two-component generalization of the annihilat- coupled branching and annihilating random walk systems of
ing random walk2-ARW) model was introduced taking into N types of excluding particles with continuous transitions at
account hard-core repulsion of particles: =0, two universality classes exist, those of the 2-BARW2S
and 2-BARW2A models, depending on whether the reactants
can immediately annihilatgi.e., when similar particles are
not separated by other tyfse of particlgs)] or not. These
o S classes differ only in the off-critical exponents, while the
(where\ andd denote the annihilation and diffusion rates on_critical ones are the same. This is due to the fact that the
and it was shown that the initial conditions influence critical point is at zero branching rater&0) and therefore
the particle densityorder parametgrdecay and the dynami- e critical exponents are the ones determined for the 2-ARW
cal exponents. On adding pair creation processegodel[18,15|.

(A—2BA,B—2AB) to this model, a continuous phase tran-  In this paper | extend the investigation to coupled binary
sition occurs at creation rate=0 and two universality production spreading processes, where new universal behav-
classes appear depending on the arrangement of the offspriiy has recently been reported. Studies on the annihilation
relative to the parertl5]; namely, if the parent separates the fission process 82—, 2A— 3A, A+ A [25-29 found

o offspring Al BAB (2-BARW2S (symmetrig¢ the
eady state density will be higher than in the case when they

N N d d
AA—J, BB—J, AJ—JA, BJ—IB, AB4BA (1)
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evidence that there is a phase transition in this model thagion and annihilation terms as E{.) and different produc-
does not belong to any previously known universality classtion processes will be investigated here.

This model without the single particle diffusion term—the so (&) The production and annihilation random walk model
called pair contact proced®CP, where pairs of particles (2-PARW):

can annihilate or create new pairs—was introduced origi- ol o2

nally by Jenseri32], and while the static exponents were AA—— AAB, AA—— BAA 3
found to belong to the DP class the spreading ones show
nonuniversal behavior. By adding explicit single particle dif-
fusion[26] Carlonet al. introduced the so called PCPD par-
ticle model. The rgno_rmalization group analysis of the cor- (b) The symmetric production and annihilation random
re__spondlng bosonic field theory was given by Howard and5k model (2-PARWS:

Tauber[25]. This study predicted a non-DP class transition,
but it could not tell to which universality class this transition
really belongs. An explanation based on symmetry argu-
ments is still missing but numerical simulations suggest -
[28,33 that the behavior of this system can be well described BB—BBB. (6)

(at least for strong diffusionby coupled subsystems: single

particles performing annihilating random walks coupled to (¢) The asymmetric production and annihilation random
pairs (B) following a DP process: B—2B, B—&J. The Walk model(2-PARWA):

al2 al2
BB— BBA BB— - ABB (4)

AA—AAA, (5

model has two nonsymmetric absorbing states: one is com- o/ /2

pletely empty and in the other a single particle walks ran- AB—— ABB, AB—— AAB, (7)
domly. Owing to this fluctuating absorbing state this model

does not oppose the conditions of the DP hypothesis. a2 ol2

In the low diffusion region §<<~0.4) some exponents of BA BAA ~ BA BBA ®)

the PCPD model are close to those of the PC class but the (d) The asymmetric production and annihilation random

order parameter expone() has been found to be very far \yalk model with spatially symmetric creatid8-PARWAS):
away from the values of both the DP and the PC c|a&s.

In fact, this system does not exhibit either the symmetry al2 ol2
or the parity conservation which appear in models with a PC AB ABA, AB BAB, ©)
class transition. In the high diffusion region the critical ex- /2 ol2
ponents seem to be differef26,28,3(, suggesting another BA—— BAB, BA—— ABA (10

universality class therg28]. This is also supported by the

pair mean-field result§26]. A recent universal finite size ~ The evolution of particle densities was followed by Monte
scaling amplitude studjB1] suggests, however, that a single Carlo simulations started from randomly distributéd, &
universality class with strong corrections to scaling may als@ites in systems of sizds=10> and with periodic boundary
be possible. conditions.

It is conjectured by Henkel and Hinrichs¢d4] that this The 2-PARWA model(c) does not have an active steady
kind of phase transition appears in models whgreolitary ~ State. TheAA andBB pairs annihilate themselves on contact,
particles diffuse(ii) particle creation requires two particles, while if an A andB particle meet al\B— ABB— A process
and (iii) particle removal requires at least two particles toreduces blockades, so the densities decay with & ¥? law
meet. Very recently, Parkt al. [35] have investigated the for ¢>0. This was confirmed by my simulations. Note that
parity conserving version of the PCPD modelA(2 4A,2A  for o=0 the blockades persist and in the case of a random
—J,AZ—JA) and, contrary to the apparent conservationinitial state apt~Y* decay can be observéds].
law, they found similar scaling behavior, which led them to  The 2-PARW(a) and 2-PARWSb) models exhibit active
the assumption that the binary nature of the offspring prosteady states fos>0 with a continuous phase transition at
duction is a necessary condition for this class. Other condie=0. Therefore the exponents at the critical point will be
tions that would influence the occurrence of this class shoulthose of the ARW-2 model. The convergence to the steady
be clarified too. In this paper | address the question oftate is very slow. For=0.1 it was longer than £OMonte
whether the particle exclusion effects are relevant, as in th€arlo stepgMCS). This limits the simulations in approach-
case of BARW processes, and whether the hypothesis set lipg the critical point ato=0. However, as Fig. 1 shows, a
for N-BARW systemq 21] could be extended. rather good scaling behavior of the density versusan be

One site update step of the applied algorithms consists afbserved.
the following processes. A particle is selected randomly. A The local slope analysis shows that the scaling behavior
left or right nearest neighbor is chosen with probability 0.5.extrapolates tg3=2.1(2) in the 2-PARWS model and {®
With probability o pair production is attempted in the case of =1.9(2) in the 2-PARW model. These values are in agree-
an appropriate neighbor. Otherwi$eith probability d=2A ment with those of the 2-BARW2A classBE2), where
=1-0) hopping is attempted if the neighboring site is production is such that pair annihilation is enhanced.
empty, or if it is filled with a particle of the same type they In the case of the 2-PARWAS modgl) the AB blockades
are annihilated. The following models with the same diffu- proliferate by production events. As a consequence of this an
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FIG. 1. Steady state densities as a functiomah the 2-PARW FIG. 3. Local slopes of the density decay in the PARWAS
(squaresand 2-PARWS(circles models. model. Different curves correspond to=0.325, 0.3252, 0.3253,

0.3254, 0.3255, and 0.326om bottom to top.

active steady state appears &or0.3253(1) with a continu-
ous phase transition. The space-time evolution from a rant0® MCS. The local slopes of the particle density decay
dom initial state showgFig. 2) that compact domains of
alternating . ABARB.. sequences separated by lonely wander- —In[p(t)/p(t/m)]
ing particles are formed. This is very similar to what was aer(t) = In(m)
seen in the case of one-component binary spreading pro-
cessed$33]: compact domains within a cloud of lonely ran- (wherem=8 is used at the critical point approach the ex-
dom walkers, except that now domains are built up fromponent « asymptotically as a straight line, while in sub-
alternating sequences only. This means th&AAA.. and  (supeicritical cases they veer dowmp) (see Fig. 3. At the
...BBBB.. domains decay at this annihilation rate and particlecritical point[ o.=0.3253(1) one can estimate that the ef-
blocking is responsible for the compact clusters. In the lanfective exponent tends ta=0.191), which is higher than
guage of the coupled DPARW model[33], the pairs fol- the exponent of (% 1)-dimensional directed percolation
lowing the DP process are now tidB pairs, which cannot [0.15951)] [36] and in fairly good agreement with that of
decay spontaneously but through an annihilation process: the PCPD model in the high diffusion rate regih20(1)]
AB+BA—J. They interact with two types of particle ex- [28].
ecuting annihilating random walks with exclusion. In the supercritical region the steady states were deter-

Simulations from random initial states were run for up tomined for differente= o — o values. Following level-off the
densities were averaged over*1RICS and 1000 samples.
By looking at the effective exponent defined as

11)

100 ¢

Inp(e)—Inp(ei-1)
In Gi_ln €i_1

Beri( €)= (12

(Fig. 4) one can read ofB.4—8=0.372), which is again
higher than the (% 1)-dimensional DP value 0.27649
[37], and agrees with that of the PCPD model in the high
diffusion rate regiorf0.392)] [28].

Finally, the survival probability P(t)] of systems started
from random initial condition was measured for sizes
=50,100,200,400,800,1600. The characteristic tirfle) to
decay toP(7)=0.9 was determined and is shown on Fig. 5.
At criticality one expects the finite size scaling

space

r(L)=L?, (13

time (MCS)

where Z is the dynamical exponent. Power-law fitting re-

FIG. 2. Space-time evolution from random initial state of the Sulted inZ=1.81(2), which is far away from the DP value
2-PARWAS model at the critical point. Black dots correspond\to  Z=1.580 740 (34)36] but close to various estimates for the
particles, gray dots t&'s. PCPD valueZ=1.75(10)[26,27).
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FIG. 4. Effective order parameter exponent results. Linear ex- FIG. 5. Lifetime versus system size at the critical point.

trapolation results ilB=0.3712). o ] ) o )
inside the compact domains. This system exhibits a continu-

In conclusion, | have shown in this work that the hypoth—ou-S phase transition aﬁj=0.3253(1) with exponents in
. ' ) . fairly good agreement with those of the PCPD model in the
esis that | made foN-BARW m_odels with e>§clu5|or[_21] . high diffusion region. Therefore, the conjecture[8ff] may
may be extended to coupled binary production annihilation,g” extended for multicomponent systems if the transition
models. The critical point in the 2-PARW and 2-PARWS happens at nonzero production rate. In the model whge
models occurs ar=0 production rate and therefore the on- pairs create offspring in such a way that prompt annihilation
critical exponents coincide with those of the 2-ARW model.is nossible, active steady states are not formed forcaagd
The simulations for the off-critical behavior of the order pa- ¢ density decays without blockades fer-0 aspoct™ 05
rameter showed that the transition belongs to the i 5 crossover to the 2-ARW model scalipgt 2% occurs
2-BARW?2A class. The robustness of this class is striking,a; =0
especially in the case of the 2-PARWS model where in prin-
ciple two copies of PCPD models are superimposed and The authors thanks H. Chasad P. Grassberger for their
coupled by the exclusion interaction only. comments. Support from Hungarian research funds OTKA
If the production is generated by different types of par-(Grant No. T-2528fand Bolyai(Grant No. BO/00142/99s
ticles (AB) such that alternating sequences are genei@ed acknowledged. The simulations were performed on the par-
PARWAS model, the space-time evolution will resemble allel cluster of SZTAKI and on the supercomputer of NIIF,
that of the PCPD model with alternating frozen sequencesiungary.

[1] See J. Marro and R. Dickmahlonequilibrium Phase Transi- [11] F. van Wijland, K. Oerding, and H. J. Hilhorst, Physic284,

tions in Lattice Models(Cambridge University Press, Cam- 179 (1998.

bridge, England, 1999and references therein. [12] J. E. de Freitas, L. S. Lucena, L. R. da Silva, and H. J. Hil-
[2] H. Hinrichsen, Adv. Phys49, 815 (2000. horst, Phys. Rev. B1, 6330(2000.
[3] H. K. Janssen, Z. Phys. B: Condens. Ma#&r 151 (1981). [13] M. C. Marques, Phys. Rev. 64, 016104-1(2001).

[4] P. Grassberger, Z. Phys. B: Condens. Madfér365(1982. Hg é Lédcc:)arlr(lj:’yhsg dRUe-vCI-B-IS-lm(Jle’lZ‘L].lBS(tZa(;.();hyQO, B
[5] P. Grassberger, F. Krause, and T. von der Twer, J. Phys, A [16] J. Hooyberghs, E. Carlon, and C. Vanderzande, Phys. Rev. E
L105 (1984. 64, 036124(2001).

[6] For an overview, see N. Menylthand G. @lor, Braz. J. Phys. [17] H. Hinrichsen and G. @or, Phys. Rev. B0, 3842(1999.

30, 113(2000, and references therein. [18] G. Odor and N. Menyhad, Phys. Rev. B51, 6404(2000).

[7] M. Rossi, R. Pastor-Satorras, and A. Vespignani, Phys. Revi19] S. Kwon, J. Lee, and H. Park, Phys. Rev. Le86 1682
Lett. 85, 1803(2000. (2000.

[8] M. A. Munoz, R. Dickman, A. Vespignani, and S. Zapperi, [20] A. Lipowski and M. Droz, Phys. Rev. B4, 031107(2007).
Phys. Rev. 59, 6175(1999. [21] G. Odor, Phys. Rev. 63, 0256108(2001).

[9] R. Pastor-Satorras and A. Vespignani, Phys. Re62E5875  [22] S. Kwon and H. Park, e-print cond-mat/0010380.
(2000. [23] D. Dhar and M. Barma, Pramana, J. Ph¥&, L193 (1993.

[10] R. Kree, B. Schaub, and B. Schmittmann, Phys. Re®9A  [24] R. B. Stinchcombe, M. D. Grynberg, and M. Barma, Phys.
2214(1989. Rev. E47, 4018(1993.

026121-4



MULTICOMPONENT BINARY SPREADING PROCESS

[25] M. J. Howard and U. C. Tiber, J. Phys. /80, 7721(1997.

[26] E. Carlon, M. Henkel, and U. Schollwk, Phys. Rev. B63,
036101-1(2001).

[27] H. Hinrichsen, Phys. Rev. B3, 036102-1(2007).

[28] G. Odor, Phys. Rev. 52, R3027(2000.

[29] G. Odor, Phys. Rev. B3, 067104(2001).

[30] P. Grassbergeiprivate communication

[31] M. Henkel and U. Schollwek, J. Phys. A34, 3333(2001).

PHYSICAL REVIEW B5 026121

[32] I. Jensen, Phys. Rev. Left0, 1465(1993.

[33] H. Hinrichsen, Physica 291, 275(2001).

[34] M. Henkel and H. Hinrichsen, J. Phys.3¥, 1561 (200J).

[35] K. Park, H. Hinrichsen, and In-mook Kim, Phys. Rev.6B,
065103R) (2002).

[36] I. Jensen, Phys. Rev. Left7, 4988(1996.

[37] R. Dickman and I. Jensen, Phys. Rev. L&, 2391(199J.

026121-5



